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INTRODUCTION

PrASAD er al. [1] recently reported new experimental data
for the thermal conductivity of liquid-saturated porous beds
of spheres. They compared their data with three correlation
formulas proposed by Kunii and Smith [2], Krupiczka [3]
and Zehner and Schliinder [4], respectively. Each of these
formulas is quite complicated and contains at least two
numerical constants which either have been determined
empirically or are specific to a particular geometry. The
purpose of this note is to demonstrate a simple correlation
formula which contains no empirical constants and which
gives a useful prediction of the thermal conductivity, given
the values of the porosity ¢, the fluid conductivity k; and the
solid conductivity k,. Some other aspects of the results of
Prasad et al. are also discussed.

The weighted arithmetic, harmonic and geometric means
of k¢ and k,, with weighting factors ¢ and 1-¢, are denoted
here by k,, ky and kg, respectively, and are given by

ka = eki+ (1 —e)k, (1
Vky = glk:+(1—e)/k, )
kg = kikl'=9, 3

Equation (1) gives the apprbpriate overall conductivity if the
heat conduction in the fluid and solid phases is entirely ‘in
parallel’. Equation (2) is appropriate if' the conduction in
the fluid and solid phases is entirely ‘in series’. One would
expect on physical grounds that k, and &;; should be upper
and lower bounds on the overall conductivity &, of the
medium, since a parallel arrangement should offer the least
resistance to heat flow and a series arrangement the greatest
resistance. The geometric mean of two quantities is always
intermediate in value between the arithmetic and harmonic
means of those quantities. This suggests that k; may well be
a good candidate for a correlation formula for a general
porous medium.

To test this suggestion, these formulas have been applied
to the data given in Table 1 of ref. [1], and the results are
given in our Table 1. For comparison, we have listed in the
last column the values predicted from the formula of Kunii
and Smith [2], namely

a,(l—¢

kys = kr|:3+ a‘l%] )
where A =kk, a, =1, a»=2/3, a,=¢,+4.63(6—0.26)
x(¢,—,). and the quantities ¢, and ¢,. which depend
on ¢, can be obtained from a plot in ref. |2). On the criterion
of smallest root mean square relative error, the Kunii-
Smith formula is slightly more successful in predicting
the data of Prasad ef al. [1] than the other correlation for-
mulas mentioned above, namely those of Krupiczka [3] and
Zchner and Schliinder {4].

We see from Table 1 that kg is reasonably competitive
with kys as a predictor of the measured data. Prediction
becomes difficult when the values of k; and k, are greatly
different from each other. The root mean square relative
error for the k; values is 2.8 times that for the &y values,
but to balance this disadvantage formula (3) is clearly much
less complicated than equation (4), so if a quick estimate of
kn is required then k¢ should serve the purpose. Formula (3)
is not specific to beds of spheres (as are the other correlation
formulas). It is suggested that formula (3) should be useful
in estimating the conductivity of general isotropic porous
media,

It 1s true that equation (3) has its limitations, especially
when A is small. In this situation we see from Tables 1 and 2
of ref. [1] that the three correlations represented in ref. [1]
are capable of predicting the thermal conductivity quite accu-
rately, whereas our equation (3) leads to an overprediction
for each of the systems glycol/steel (Medium 5 in our Table
1), water/steel (for which Table 3 of ref. [1] lists a measured
value of 4.653 whereas equation (3) gives 7.61) and water/

Table [. Data based on Table 1 of ref. [1). The values of ¢, k,, 4 and kys, and the measured values of
conductivity, are those given in that table. The values for k, have been computed from the two previous
columns. The values of k,, kyy and k¢ have been computed from equations (1), (2) and (3), respectively

Medium 13 ke A= kik, k¢ ka ky kg  Measured  kgq
[ water/glass 0.396  1.10 0.560 0.616 0908 0.839 0.874  0.837 0.831
2 water/glass 0.425 1.10 0.562 0618 0.894 0.824 0.860 0.842  0.810
3 glycol/glass 0.349  1.10 0.235 0.259 0.806 0.515 0.664 0.559 0.656
4 glycol/glass 0427 110 0.235 0.259 0.741 0460 0.593 0.597  0.555
5 glycol/steel 0416 37.39 0.007 0.262 21940 0.623 4.746 2.584 2.167
6 glycol/acrylic 0402 0.16 1.630 0.261 0201 0.189 0.195 0.221 0.206
7 water/acrylic 0427 0.16 3.937 0.630 0.361 0.235 0.287 0479 0371
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tead (for which Table 4 of ref. {1], where the printed value
of 4 should be replaced by its reciprocal, lists a measured
value of 4.78 whereas equation (3) gives 7.87). Thus when 4
is small, Krupiczka’s formula (formula (3) of ref. {1]). namely

ko= kiAo (5)

where
n=0.280—0.757log,, ¢+ 0.057 log,, / (6)

is preferable since it is more accurate and is not much more
complicated than our equation (3). In fact equation (3) can
be written as

ko = k! ke 7)

which is of the same form as equation (3) with the porosity
s replaced by 1 —n (which is. of course. dependent on 7 as well
as ¢).

When £ > 1, equations (3) and (5) give similar valucs,
which are underestimates of the measured values. Indecd.
Table 1 of ref. [1] shows that all the proposed corrclations
give underestimates. More dramatically, the measured values
are anomalous because they exceed by a considerable amount
the corresponding values of &, (which, as noted above, arc
expected to be upper bounds on the overall conductivities).
A similar comment applies to the last entry in Table 4 of
ref. [1], which refers to a water/polypropylene system: the
measured value of 0.30 exceeds the value of &, namely 0.241.

An explanation for the anomaly is not immediately obvi-
ous. Prasad et al. [1] state that no efforts were made to
estimate the heat transfer through the side wall. but the
implication is that this was small. In any case. an inwards
heat flux is physically implausible, so an explanation must
be sought elsewhere. Georgiadis and Catton [3] have shown
that a variation of porosity in a packed bed can lead to an
increase in a volume flux by a substantial amount (9% in
one example) and there is an analogous thermal effect. It is
noteworthy that for Medium 6 (in our Table 1) the bed
thickness was about 14 times the particle diameter, and for
Medium 7 this thickness was only 7 times the particle diam-
eter, and it is known that the presence of smooth walls
introduces variations in bulk porosity inside a layer about
four diameters thick. Thus variation in porositv can account
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for at least some of the excess thermal conductivity.
However, the anomaly in the case of Medium 7 is so farge
that it appears that some other explanation is required. One
is led to speculate that the experimenters may not have meus-
ured a stagnant thermal conductivity, but rather the ellective
conductivity in a situation in which there were present con-
vecetion currents set up locally by lateral vanations of tem-
perature along the surface of the poorly conducting soiid
material. Clearly the matter needs further investigation,

After completing the first draft ot this note the author
realized that he is by no means the first to propose the usc
of equation (3). Combarnous and Borics {6] refer to an
‘empirical model” of Lichteneker which involves this equa-
tion.

Acknowledgemeni—The author 1s gratetul to a referee for
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