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INTRODUCTION 

PRASAD et al. [l] recently reported new experimental data 
for the thermal conductivity of liquid-saturated porous beds 
of spheres. They compared their data with three correlation 
formulas proposed by Kunii and Smith [2], Krupiczka [3] 
and Zehner and Schliinder [4], respectively. Each of these 
formulas is quite complicated and contains at least two 
numerical constants which either have been determined 
empirically or are specific to a particular geometry. The 
purpose of this note is to demonstrate a simple correlation 
formula which contains no empirical constants and which 
gives a useful prediction of the thermal conductivity, given 
the values of the porosity E, the fluid conductivity k, and the 
solid conductivity k,. Some other aspects of the results of 
Prasad et al. are also discussed. 

The weighted arithmetic, harmonic and geometric means 
of kr and k,, with weighting factors E and 1 -E, are denoted 
here by kA, k,, and k,, respectively, and are given by 

kA = Ekf+(l --~)k, (1) 

l/k,, = &+(I --E)/k, (2) 

k 
G 

= k”k”m”’ 
II (3) 

Equation (1) gives the apprbpriate overall conductivity if the 
heat conduction in the fluid and solid phases is entirely ‘in 
parallel’. Equation (2) is ;tppropriate if the conduction in 

the fluid and solid phases is entirely ‘in series’. One would 
expect on physical grounds that k, and k, should be upper 
and lower bounds on the overall conductivity k, of the 
medium, since a parallel arrangement should offer the least 
resistance to heat flow and a series arrangement the greatest 
resistance. The geometric mean of two quantities is always 
intermediate in value between the arithmetic and harmonic 
means of those quantities. This suggests that k, may well be 
a good candidate for a correlation formula for a general 
porous medium. 

To test this suggestion, these formulas have been applied 
to the data given in Table 1 of ref. [l], and the results are 
given in our Table 1. For comparison, we have listed in the 
last column the values predicted from the formula of Kunii 
and Smith [2], namely 

where i = k,/k,, a, = I, u, = 2/3, (ii = cp?+4.63(~-0.26) 
x ((p, -up?). and the quantities (p, and (pt. which depend 

on E, can be obtained from a plot in ref. 121. On the criterion 
of smallest root mean square relative error, the Kunii- 
Smith formula is slightly more successful in predicting 
the data of Prasad et al. [l] than the other correlation for- 
mulas mentioned above, namely those of Krupiczka [3] and 
Zehner and Schliinder [4]. 

We see from Table I that k, is reasonably competitive 
with k,, as a predictor of the measured data. Prediction 
becomes difficult when the values of kf and k, are greatly 
different from each other. The root mean square relative 
error for the kc values is 2.8 times that for the kKS values, 
but to balance this disadvantage formula (3) is clearly much 
less complicated than equation (4), so if a quick estimate of 
k,, is required then k, should serve the purpose. Formula (3) 
is not specific to beds of spheres (as are the other correlation 
formulas). It is suggested that formula (3) should be useful 
in estimating the conductivity of general isotropic porous 
media, 

It is true that equation (3) has its limitations, especially 
when i is small. In this situation we see from Tables 1 and 2 
of ref. [I] that the three correlations represented in ref. [l] 
are capable ofpredicting the thermal conductivity quite accu- 
rately, whereas our equation (3) leads to an overprediction 
for each of the systems glycol/steel (Medium 5 in our Table 
1). water/steel (for which Table 3 of ref. [l] lists a measured 
value of 4.653 whereas equation (3) gives 7.61) and water/ 

Table 1. Data based on Table 1 of ref. [l]. The values of E, k,, 3. and k KS, and the measured values of 
conductivity, are those given in that table. The values for k, have been computed from the two previous 

columns. The values of k,, kEl and k, have been computed from equations (I), (2) and (3), respectively 

Medium E k E. = kdk, kf kA k, kc Measured k,, 

1 water/glass 0.396 1.10 0.560 0.616 0.908 0.839 0.874 0.837 0.83 1 
2 water/glass 0.425 1.10 0.562 0.618 0.894 0.824 0.860 0.842 
3 glycol/glass 

0.810 
0.349 1.10 0.235 0.259 0.806 0.515 0.664 0.559 

4 glycol/glass 
0.656 

0.427 1.10 0.235 0.259 0.741 0.460 0.593 0.597 
5 glycol/steel 

0.555 
0.416 37.39 0.007 0.262 21.940 0.623 4.746 2.584 

6 glycol/acrylic 
2.167 

0.402 0.16 1.630 0.261 0.201 0.189 0.195 0.221 
7 water/acrylic 

0.206 
0.427 0.16 3.937 0.630 0.361 0.235 0.287 0.479 0.371 



lead (for which Table 4 01’ ref. (I]. where the prlnted value 
of i should be replaced by its reciprocal, lists a measured 
value of 4.7X whereas equation (3) gives 7.X7). Thus when i. 
is small. Krupiczka’s formula (formula (3) of ref. [I]). namely 

where 

II = 0.2X0~0.757l~~~,,,i:+0.057log,,,i ( h I 

is preferable since it is more accurate and is not much more 
complicated than OUI- eyuatlon (3). In fact equation (5) can 
be written as 

When i. > 1. equations (3) and (5) gvc similar values. 
which arc underestimates of the measured values. Indeed. 
Table I of ref. [l] shows that all the proposed correlations 
give underestimates. More dramatically, the measured values 
are anomalous because they exceed by a considerable amount 
the corresponding values of X, (which, as noted above. arc 
expected to be upper bounds on the overall conductivitics). 
A similar comment applies to the last entry in Table 4 01 
ref. [I]. which rcfcrs to a uatcr;polypropylcnc system : the 
measured value ofO.30 cxcccds the value ofh-,, namely 0.34 I. 

An explanation for the anomaly is not immediatcl) obvi- 
ous. Prasad et trl. [l] state that no efforts were made to 
estimate the heat transfer through the side wall. but the 
implication is that this was small. In any case, an inwards 
heat flux is physically implausible, so an explanation must 
be sought elsewhere. Georgiadis and Catton 151 have shown 
that a variation of porosity in a packed bed can lead to an 
increase in a volume flux by a substantial amount (9% m 
one example) and there is an analogous thermal effect. It is 
noteworthy that for Medium 6 (in our Table I) the bed 
thickness was about I4 times the particle diameter. and 101 
Medium 7 this thickness was only 7 times the particle diam- 
eter, and it is known that the presence of smooth walls 

introduces variations in bulk porosity inside a layer about 
four diameters thick. Thus variation in poroqitv can mxuml 

l’or at least some of the excc’ss thermal conductivlt>. 
However, the anomaly in the case of Medium 7 is so large 
that it appears that some other explanation is required. One 
is led to speculate that the expcrimcnters may not ha\c mca~ 
urcd a stagnant thermal conductivity, but rathcl- the ell’cctl\c 
conductivity in a situation in which thcrt~ \\cr< present c:011- 
Lcctlon currents set up locally b! latc~ai \arlations 01‘ tem- 
pet-aturc along the surface of the poori! conducting \oiid 
material. (‘Iearly the matter needs furthct in\euli+ltio!: 

I. 

2. 

3. 
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.? 
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